A Z score table or chart gives the probabilities of different z -scores.
Alternative names for z score Table
The Z-score table is also known as the normal score, distribution table, normal distribution chart, normal distribution chart z score, standard z score chart, standard normal table, unit normal table, Z-Value, bell curve, Standardized score, Standardized variable, or the Altman Z-score.
How does a probability z score table work?
The probability Z-score table is composed of columns and rows which depict probability values. Each z score value to be checked on the table should be rounded to two decimal places.
The first column of the probability z score table shows the Z-Value with the first decimal place, while the top most row shows the Z’s value second decimal place.
For better understanding, let us illustrate this with an example where you are asked to read the probability of a Z score of 2.5.
-
- (Step 1): Write your Z score in two decimal places. In this case, 2.5 can be written as 2.50
- (Step 2): Check the first column of the Z-score chart for the value “2.5”
- (Step 3): Check the top row for the value with a “0”
- (Step 4): Move right along the row you identified in Step 2 above and downwards along the column you identified in Step 3 above. Read the value at their intersection point. In this case, the value is 0.99379, which is equivalent to 99.379%.
Normal distribution positive z score table up to 4
The normal distribution positive z score table up to 4 is the right z score table. It depicts the value of the z score from positive 4 to zero.
Z | 0 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
4.0 | 0.99997 | 0.99997 | 0.99997 | 0.99997 | 0.99997 | 0.99997 | 0.99998 | 0.99998 | 0.99998 | 0.99998 |
3.9 | 0.99995 | 0.99995 | 0.99996 | 0.99996 | 0.99996 | 0.99996 | 0.99996 | 0.99996 | 0.99997 | 0.99997 |
3.8 | 0.99993 | 0.99993 | 0.99993 | 0.99994 | 0.99994 | 0.99994 | 0.99994 | 0.99995 | 0.99995 | 0.99995 |
3.7 | 0.99989 | 0.9999 | 0.9999 | 0.9999 | 0.99991 | 0.99991 | 0.99992 | 0.99992 | 0.99992 | 0.99992 |
3.6 | 0.99984 | 0.99985 | 0.99985 | 0.99986 | 0.99986 | 0.99987 | 0.99987 | 0.99988 | 0.99988 | 0.99989 |
3.5 | 0.99977 | 0.99978 | 0.99978 | 0.99979 | 0.9998 | 0.99981 | 0.99981 | 0.99982 | 0.99983 | 0.99983 |
3.4 | 0.99966 | 0.99968 | 0.99969 | 0.9997 | 0.99971 | 0.99972 | 0.99973 | 0.99974 | 0.99975 | 0.99976 |
3.3 | 0.99952 | 0.99953 | 0.99955 | 0.99957 | 0.99958 | 0.9996 | 0.99961 | 0.99962 | 0.99964 | 0.99965 |
3.2 | 0.99931 | 0.99934 | 0.99936 | 0.99938 | 0.9994 | 0.99942 | 0.99944 | 0.99946 | 0.99948 | 0.9995 |
3.1 | 0.99903 | 0.99906 | 0.9991 | 0.99913 | 0.99916 | 0.99918 | 0.99921 | 0.99924 | 0.99926 | 0.99929 |
3.0 | 0.99865 | 0.99869 | 0.99874 | 0.99878 | 0.99882 | 0.99886 | 0.99889 | 0.99893 | 0.99896 | 0.999 |
2.9 | 0.99813 | 0.99819 | 0.99825 | 0.99831 | 0.99836 | 0.99841 | 0.99846 | 0.99851 | 0.99856 | 0.99861 |
2.8 | 0.99744 | 0.99752 | 0.9976 | 0.99767 | 0.99774 | 0.99781 | 0.99788 | 0.99795 | 0.99801 | 0.99807 |
2.7 | 0.99653 | 0.99664 | 0.99674 | 0.99683 | 0.99693 | 0.99702 | 0.99711 | 0.9972 | 0.99728 | 0.99736 |
2.6 | 0.99534 | 0.99547 | 0.9956 | 0.99573 | 0.99585 | 0.99598 | 0.99609 | 0.99621 | 0.99632 | 0.99643 |
2.5 | 0.99379 | 0.99396 | 0.99413 | 0.9943 | 0.99446 | 0.99461 | 0.99477 | 0.99492 | 0.99506 | 0.9952 |
2.4 | 0.9918 | 0.99202 | 0.99224 | 0.99245 | 0.99266 | 0.99286 | 0.99305 | 0.99324 | 0.99343 | 0.99361 |
2.3 | 0.98928 | 0.98956 | 0.98983 | 0.9901 | 0.99036 | 0.99061 | 0.99086 | 0.99111 | 0.99134 | 0.99158 |
2.2 | 0.9861 | 0.98645 | 0.98679 | 0.98713 | 0.98745 | 0.98778 | 0.98809 | 0.9884 | 0.9887 | 0.98899 |
2.1 | 0.98214 | 0.98257 | 0.983 | 0.98341 | 0.98382 | 0.98422 | 0.98461 | 0.985 | 0.98537 | 0.98574 |
2.0 | 0.97725 | 0.97778 | 0.97831 | 0.97882 | 0.97932 | 0.97982 | 0.9803 | 0.98077 | 0.98124 | 0.98169 |
1.9 | 0.97128 | 0.97193 | 0.97257 | 0.9732 | 0.97381 | 0.97441 | 0.975 | 0.97558 | 0.97615 | 0.9767 |
1.8 | 0.96407 | 0.96485 | 0.96562 | 0.96638 | 0.96712 | 0.96784 | 0.96856 | 0.96926 | 0.96995 | 0.97062 |
1.7 | 0.95543 | 0.95637 | 0.95728 | 0.95818 | 0.95907 | 0.95994 | 0.9608 | 0.96164 | 0.96246 | 0.96327 |
1.6 | 0.9452 | 0.9463 | 0.94738 | 0.94845 | 0.9495 | 0.95053 | 0.95154 | 0.95254 | 0.95352 | 0.95449 |
1.5 | 0.93319 | 0.93448 | 0.93574 | 0.93699 | 0.93822 | 0.93943 | 0.94062 | 0.94179 | 0.94295 | 0.94408 |
1.4 | 0.91924 | 0.92073 | 0.9222 | 0.92364 | 0.92507 | 0.92647 | 0.92785 | 0.92922 | 0.93056 | 0.93189 |
1.3 | 0.9032 | 0.9049 | 0.90658 | 0.90824 | 0.90988 | 0.91149 | 0.91309 | 0.91466 | 0.91621 | 0.91774 |
1.2 | 0.88493 | 0.88686 | 0.88877 | 0.89065 | 0.89251 | 0.89435 | 0.89617 | 0.89796 | 0.89973 | 0.90147 |
1.1 | 0.86433 | 0.8665 | 0.86864 | 0.87076 | 0.87286 | 0.87493 | 0.87698 | 0.879 | 0.881 | 0.88298 |
1.0 | 0.84134 | 0.84375 | 0.84614 | 0.84849 | 0.85083 | 0.85314 | 0.85543 | 0.85769 | 0.85993 | 0.86214 |
0.9 | 0.81594 | 0.81859 | 0.82121 | 0.82381 | 0.82639 | 0.82894 | 0.83147 | 0.83398 | 0.83646 | 0.83891 |
0.8 | 0.78814 | 0.79103 | 0.79389 | 0.79673 | 0.79955 | 0.80234 | 0.80511 | 0.80785 | 0.81057 | 0.81327 |
0.7 | 0.75804 | 0.76115 | 0.76424 | 0.7673 | 0.77035 | 0.77337 | 0.77637 | 0.77935 | 0.7823 | 0.78524 |
0.6 | 0.72575 | 0.72907 | 0.73237 | 0.73565 | 0.73891 | 0.74215 | 0.74537 | 0.74857 | 0.75175 | 0.7549 |
0.5 | 0.69146 | 0.69497 | 0.69847 | 0.70194 | 0.7054 | 0.70884 | 0.71226 | 0.71566 | 0.71904 | 0.7224 |
0.4 | 0.65542 | 0.6591 | 0.66276 | 0.6664 | 0.67003 | 0.67364 | 0.67724 | 0.68082 | 0.68439 | 0.68793 |
0.3 | 0.61791 | 0.62172 | 0.62552 | 0.6293 | 0.63307 | 0.63683 | 0.64058 | 0.64431 | 0.64803 | 0.65173 |
0.2 | 0.57926 | 0.58317 | 0.58706 | 0.59095 | 0.59483 | 0.59871 | 0.60257 | 0.60642 | 0.61026 | 0.61409 |
0.1 | 0.53983 | 0.5438 | 0.54776 | 0.55172 | 0.55567 | 0.55962 | 0.56356 | 0.56749 | 0.57142 | 0.57535 |
0.0 | 0.5 | 0.50399 | 0.50798 | 0.51197 | 0.51595 | 0.51994 | 0.52392 | 0.5279 | 0.53188 | 0.53586 |
How to use the positive z score table
The process of reading probability or a positive score table is similar to the example given above
Step 1: Check the value of the Z score given up to the 1st decimal place on the 1st column of the table
Step 2: Check the 1st row of the table for the value in the second decimal place of your given Z sore
Step 3: Move along the row where the value of your Z score was in Step 1 and move along the column where your z score appeared. Read the value at their intersection point. For instance, for a Z score of 1.23, we would have 0.89065
Thus, the value of the z score is 0.89065. To get the percentage, we can multiply the number by 100. Thus, we get 89.065%
Normal distribution negative score table up to -4
The normal distribution negative z score table up to -4 is on the left of the z score table. It depicts the negative values of the z score
Z | 0 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
0.0 | 0.5 | 0.49601 | 0.49202 | 0.48803 | 0.48405 | 0.48006 | 0.47608 | 0.4721 | 0.46812 | 0.46414 |
-0.1 | 0.46017 | 0.4562 | 0.45224 | 0.44828 | 0.44433 | 0.44038 | 0.43644 | 0.43251 | 0.42858 | 0.42465 |
-0.2 | 0.42074 | 0.41683 | 0.41294 | 0.40905 | 0.40517 | 0.40129 | 0.39743 | 0.39358 | 0.38974 | 0.38591 |
-0.3 | 0.38209 | 0.37828 | 0.37448 | 0.3707 | 0.36693 | 0.36317 | 0.35942 | 0.35569 | 0.35197 | 0.34827 |
-0.4 | 0.34458 | 0.3409 | 0.33724 | 0.3336 | 0.32997 | 0.32636 | 0.32276 | 0.31918 | 0.31561 | 0.31207 |
-0.5 | 0.30854 | 0.30503 | 0.30153 | 0.29806 | 0.2946 | 0.29116 | 0.28774 | 0.28434 | 0.28096 | 0.2776 |
-0.6 | 0.27425 | 0.27093 | 0.26763 | 0.26435 | 0.26109 | 0.25785 | 0.25463 | 0.25143 | 0.24825 | 0.2451 |
-0.7 | 0.24196 | 0.23885 | 0.23576 | 0.2327 | 0.22965 | 0.22663 | 0.22363 | 0.22065 | 0.2177 | 0.21476 |
-0.8 | 0.21186 | 0.20897 | 0.20611 | 0.20327 | 0.20045 | 0.19766 | 0.19489 | 0.19215 | 0.18943 | 0.18673 |
-0.9 | 0.18406 | 0.18141 | 0.17879 | 0.17619 | 0.17361 | 0.17106 | 0.16853 | 0.16602 | 0.16354 | 0.16109 |
-1.0 | 0.15866 | 0.15625 | 0.15386 | 0.15151 | 0.14917 | 0.14686 | 0.14457 | 0.14231 | 0.14007 | 0.13786 |
-1.1 | 0.13567 | 0.1335 | 0.13136 | 0.12924 | 0.12714 | 0.12507 | 0.12302 | 0.121 | 0.119 | 0.11702 |
-1.2 | 0.11507 | 0.11314 | 0.11123 | 0.10935 | 0.10749 | 0.10565 | 0.10383 | 0.10204 | 0.10027 | 0.09853 |
-1.3 | 0.0968 | 0.0951 | 0.09342 | 0.09176 | 0.09012 | 0.08851 | 0.08691 | 0.08534 | 0.08379 | 0.08226 |
-1.4 | 0.08076 | 0.07927 | 0.0778 | 0.07636 | 0.07493 | 0.07353 | 0.07215 | 0.07078 | 0.06944 | 0.06811 |
-1.5 | 0.06681 | 0.06552 | 0.06426 | 0.06301 | 0.06178 | 0.06057 | 0.05938 | 0.05821 | 0.05705 | 0.05592 |
-1.6 | 0.0548 | 0.0537 | 0.05262 | 0.05155 | 0.0505 | 0.04947 | 0.04846 | 0.04746 | 0.04648 | 0.04551 |
-1.7 | 0.04457 | 0.04363 | 0.04272 | 0.04182 | 0.04093 | 0.04006 | 0.0392 | 0.03836 | 0.03754 | 0.03673 |
-1.8 | 0.03593 | 0.03515 | 0.03438 | 0.03362 | 0.03288 | 0.03216 | 0.03144 | 0.03074 | 0.03005 | 0.02938 |
-1.9 | 0.02872 | 0.02807 | 0.02743 | 0.0268 | 0.02619 | 0.02559 | 0.025 | 0.02442 | 0.02385 | 0.0233 |
-2.0 | 0.02275 | 0.02222 | 0.02169 | 0.02118 | 0.02068 | 0.02018 | 0.0197 | 0.01923 | 0.01876 | 0.01831 |
-2.1 | 0.01786 | 0.01743 | 0.017 | 0.01659 | 0.01618 | 0.01578 | 0.01539 | 0.015 | 0.01463 | 0.01426 |
-2.2 | 0.0139 | 0.01355 | 0.01321 | 0.01287 | 0.01255 | 0.01222 | 0.01191 | 0.0116 | 0.0113 | 0.01101 |
-2.3 | 0.01072 | 0.01044 | 0.01017 | 0.0099 | 0.00964 | 0.00939 | 0.00914 | 0.00889 | 0.00866 | 0.00842 |
-2.4 | 0.0082 | 0.00798 | 0.00776 | 0.00755 | 0.00734 | 0.00714 | 0.00695 | 0.00676 | 0.00657 | 0.00639 |
-2.5 | 0.00621 | 0.00604 | 0.00587 | 0.0057 | 0.00554 | 0.00539 | 0.00523 | 0.00508 | 0.00494 | 0.0048 |
-2.6 | 0.00466 | 0.00453 | 0.0044 | 0.00427 | 0.00415 | 0.00402 | 0.00391 | 0.00379 | 0.00368 | 0.00357 |
-2.7 | 0.00347 | 0.00336 | 0.00326 | 0.00317 | 0.00307 | 0.00298 | 0.00289 | 0.0028 | 0.00272 | 0.00264 |
-2.8 | 0.00256 | 0.00248 | 0.0024 | 0.00233 | 0.00226 | 0.00219 | 0.00212 | 0.00205 | 0.00199 | 0.00193 |
-2.9 | 0.00187 | 0.00181 | 0.00175 | 0.00169 | 0.00164 | 0.00159 | 0.00154 | 0.00149 | 0.00144 | 0.00139 |
-3.0 | 0.00135 | 0.00131 | 0.00126 | 0.00122 | 0.00118 | 0.00114 | 0.00111 | 0.00107 | 0.00104 | 0.001 |
-3.1 | 0.00097 | 0.00094 | 0.0009 | 0.00087 | 0.00084 | 0.00082 | 0.00079 | 0.00076 | 0.00074 | 0.00071 |
-3.2 | 0.00069 | 0.00066 | 0.00064 | 0.00062 | 0.0006 | 0.00058 | 0.00056 | 0.00054 | 0.00052 | 0.0005 |
-3.3 | 0.00048 | 0.00047 | 0.00045 | 0.00043 | 0.00042 | 0.0004 | 0.00039 | 0.00038 | 0.00036 | 0.00035 |
-3.4 | 0.00034 | 0.00032 | 0.00031 | 0.0003 | 0.00029 | 0.00028 | 0.00027 | 0.00026 | 0.00025 | 0.00024 |
-3.5 | 0.00023 | 0.00022 | 0.00022 | 0.00021 | 0.0002 | 0.00019 | 0.00019 | 0.00018 | 0.00017 | 0.00017 |
-3.6 | 0.00016 | 0.00015 | 0.00015 | 0.00014 | 0.00014 | 0.00013 | 0.00013 | 0.00012 | 0.00012 | 0.00011 |
-3.7 | 0.00011 | 0.0001 | 0.0001 | 0.0001 | 0.00009 | 0.00009 | 0.00008 | 0.00008 | 0.00008 | 0.00008 |
-3.8 | 0.00007 | 0.00007 | 0.00007 | 0.00006 | 0.00006 | 0.00006 | 0.00006 | 0.00005 | 0.00005 | 0.00005 |
-3.9 | 0.00005 | 0.00005 | 0.00004 | 0.00004 | 0.00004 | 0.00004 | 0.00004 | 0.00004 | 0.00003 | 0.00003 |
-4.0 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00003 | 0.00002 | 0.00002 | 0.00002 | 0.00002 |
How to use the negative z score table
The process of reading the Z score table is the same for both the negative and the positive values.
Relationship between standard deviation and Z score table
The relationship between standard deviation and z score is that they are inversely proportional.
This depicts that if the standard deviation of the values increases, the z score decreases. Conversely, if the standard deviation decreases, the z score increases.
The Z-score reflects how many standard deviations a raw score deviates from the mean.
The standard deviation reflects the level of variability within a given data collection and indicates the line that a specific data point lies on. Thus, a higher standard deviation will translate to a lower z score value on the table.
Download pdf Z score table
Download the PDF z-score table or the z-score table normal distribution pdf. It encompasses both the positive and negative z score values. It is a printable z score table/chart freely available. The table will also provide normal curve area z-score table values.